Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37422443

RESUMO

As the association of denitrification with global warming and nitrogen removal from ecosystems has gained attention in recent decades, numerous studies have examined denitrification rates and the distribution of denitrifiers across different environments. In this minireview, reported studies focused on coastal saline environments, including estuaries, mangroves, and hypersaline ecosystems, have been analysed to identify the relationship between denitrification and saline gradients. The analyses of the literature and databases stated the direct effect of salinity on the distribution patterns of denitrifiers. However, few works do not support this hypothesis thus making this topic controversial. The specific mechanisms by which salinity influences denitrifier distribution are not fully understood. Nevertheless, several physical and chemical environmental parameters, in addition to salinity, have been shown to play a role in structuring the denitrifying microbial communities. The prevalence of nirS or nirK denitrifiers in ecosystems is a subject of debate in this work. In general terms, in mesohaline environments, the predominant nitrite reductase is NirS type and, NirK is found predominantly in hypersaline environments. Moreover, the approaches used by different researchers are quite different, resulting in a huge amount of unrelated information, making it difficult to establish comparative analysis. The main techniques used to analyse the distribution of denitrifying populations along salt gradients have been also discussed.


Assuntos
Desnitrificação , Microbiota , Sedimentos Geológicos , Estuários , Nitrito Redutases
2.
Adv Exp Med Biol ; 1261: 165-174, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33783738

RESUMO

Haloarchaea are halophilic microorganisms belonging to the Archaea domain that inhabit salty environments (mainly soils and water) all around the world. Most of the genera included in this group are able to produce carotenoids at significant concentrations (even wild-type strains). The major carotenoid produced by the cells is bacterioruberin (and its derivatives), which is only produced by this kind of microbes. Nevertheless, the understanding of carotenoid metabolism in haloarchaea, its regulation, and the roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. Besides, potential biotechnological uses of haloarchaeal pigments are poorly explored. This work summarizes what it has been described so far about carotenoid production by haloarchaea, haloarchaeal carotenoid production at large scale, as well as the potential uses of haloarchaeal pigments in biotechnology and biomedicine.


Assuntos
Archaea , Carotenoides , Archaea/genética , Biotecnologia , Pigmentação
3.
Front Microbiol ; 11: 605859, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363526

RESUMO

Many proteins and enzymes involved in denitrification in haloarchaea can be inferred to be located between the cytoplasmic membrane and the S-layer, based on the presence of a Tat signal sequence and the orientation of the active site that some of these enzymes have. The membrane fraction of the haloarchaeon Haloferax mediterranei (R-4), grown under anaerobic conditions in the presence of nitrate, was solubilized to identify the respiratory proteins associated or anchored to it. Using Triton X-100, CHAPS, and n-Octyl-ß-d-glucopyranoside at different concentrations we found the best conditions for isolating membrane proteins in micelles, in which enzymatic activity and stability were maintained. Then, they were subjected to purification using two chromatographic steps followed by the analysis of the eluents by NANO-ESI Chip-HPLC-MS/MS. The results showed that the four main enzymes of denitrification (nitrate, nitrite, nitric oxide, and nitrous oxide reductases) in H. mediterranei were identified and they were co-purified thanks to the micelles made with Triton X-100 (20% w/v for membrane solubilisation and 0.2% w/v in the buffers used during purification). In addition, several accessory proteins involved in electron transfer processes during anaerobic respiration as well as proteins supporting ATP synthesis, redox balancing and oxygen sensing were detected. This is the first characterization of anaerobic membrane proteome of haloarchaea under denitrifying conditions using liquid chromatography-mass spectrometry. It provides new information for a better understanding of the anaerobic respiration in haloarchaea.

4.
Front Microbiol ; 11: 768, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390995

RESUMO

Haloferax mediterranei (R4) belongs to the group of halophilic archaea, one of the predominant microbial populations in hypersaline environments. In these ecosystems, the low availability of oxygen pushes the microbial inhabitants toward anaerobic pathways and the presence of N-oxyanions favor denitrification. In a recent study comparing three Haloferax species carrying dissimilatory N-oxide reductases, H. mediterranei showed promise as a future model for archaeal denitrification. This work further explores the respiratory physiology of this haloarchaeon when challenged with ranges of nitrite and nitrate concentrations and at neutral or sub-neutral pH during the transition to anoxia. Moreover, to begin to understand the transcriptional regulation of N-oxide reductases, detailed gas kinetics was combined with gene expression analyses at high resolution. The results show that H. mediterranei has an expression pattern similar to that observed in the bacterial Domain, well-coordinated at low concentrations of N-oxyanions. However, it could only sustain a few generations of exponential anaerobic growth, apparently requiring micro-oxic conditions for de novo synthesis of denitrification enzymes. This is the first integrated study within this field of knowledge in haloarchaea and Archaea in general, and it sheds lights on denitrification in salty environments.

5.
Sci Total Environ ; 704: 135382, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31812413

RESUMO

Deep eutectic solvents (DESs) were described at the beginning of this century as an alternative to ionic liquids (ILs) in green chemistry. Despite their obvious sustainable advantages as reaction media, there is still controversy about their potential toxicity. Most of the ecotoxicity assays done up to now involving DESs are based on antibiograms. This is not a good approach due to the high density and viscosity of most DESs already described. Additionally, antibiograms do not allow continuous monitoring of neither cellular growth nor changes on physicochemical parameters like culture acidification due to cellular growth or DESs metabolization. This work starts by displaying advantages and disadvantages of the DESs toxicity assays already reported. Then, using a new DES recently described and Escherichia coli as a model microorganism, liquid cultures with continuous monitoring of pH, temperature, shaking and optical density have been used, for the first time, to quantify potential toxicity of the DES as well as the degree of the cellular tolerance (in preadapted and non-preadapted cells). The results obtained show that this new DES is not toxic for E. coli at concentrations up to 300 mM and cellular preadaptation was crucial for the cells to grow. At concentrations between 300 mM and 450 mM, cells can tolerate this DES. Above 600 mM, the DES is toxic causing complete inhibition of growth. This toxicity is not only due to the chemical composition of the DES, but also due to the high acidification of the media caused by the DES hydrolysis during cellular growth. The consequences of sterilization procedures on the DES stability are also analysed into detail, finding that sterilization by autoclave promotes DES hydrolysis. From these results, new guidelines are proposed for furthers studies aiming to characterize and quantify DESs toxicity.


Assuntos
Poluentes Ambientais/toxicidade , Solventes/toxicidade , Testes de Toxicidade/métodos
6.
Int J Mol Sci ; 20(13)2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288391

RESUMO

Dimethyl sulfoxide reductases (DMSO) are molybdoenzymes widespread in all domains of life. They catalyse not only redox reactions, but also hydroxylation/hydration and oxygen transfer processes. Although literature on DMSO is abundant, the biological significance of these enzymes in anaerobic respiration and the molecular mechanisms beyond the expression of genes coding for them are still scarce. In this review, a deep revision of the literature reported on DMSO as well as the use of bioinformatics tools and free software has been developed in order to highlight the relevance of DMSO reductases on anaerobic processes connected to different biogeochemical cycles. Special emphasis has been addressed to DMSO from extremophilic organisms and their role in nitrogen cycle. Besides, an updated overview of phylogeny of DMSOs as well as potential applications of some DMSO reductases on bioremediation approaches are also described.


Assuntos
Extremófilos , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Isoenzimas , Família Multigênica , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , Coenzimas/química , Coenzimas/metabolismo , Extremófilos/genética , Extremófilos/metabolismo , Proteínas Ferro-Enxofre/química , Redes e Vias Metabólicas , Metaloproteínas/química , Metaloproteínas/metabolismo , Molibdênio/química , Molibdênio/metabolismo , Cofatores de Molibdênio , Ciclo do Nitrogênio , Oxirredução , Oxirredutases/química , Pteridinas/química , Pteridinas/metabolismo , Relação Estrutura-Atividade , Tungstênio/química , Tungstênio/metabolismo
7.
Environ Microbiol ; 21(1): 427-436, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30421557

RESUMO

Haloarchaea are extremophiles, generally thriving at high temperatures and salt concentrations, thus, with limited access to oxygen. As a strategy to maintain a respiratory metabolism, many halophilic archaea are capable of denitrification. Among them are members of the genus Haloferax, which are abundant in saline/hypersaline environments. Three reported haloarchaeal denitrifiers, Haloferax mediterranei, Haloferax denitrificans and Haloferax volcanii, were characterized with respect to their denitrification phenotype. A semi-automatic incubation system was used to monitor the depletion of electron acceptors and accumulation of gaseous intermediates in batch cultures under a range of conditions. Out of the species tested, only H. mediterranei was able to consistently reduce all available N-oxyanions to N2 , while the other two released significant amounts of NO and N2 O, which affect tropospheric and stratospheric chemistries respectively. The prevalence and magnitude of hypersaline ecosystems are on the rise due to climate change and anthropogenic activity. Thus, the biology of halophilic denitrifiers is inherently interesting, due to their contribution to the global nitrogen cycle, and potential application in bioremediation. This work is the first detailed physiological study of denitrification in haloarchaea, and as such a seed for our understanding of the drivers of nitrogen turnover in hypersaline systems.


Assuntos
Desnitrificação/fisiologia , Haloferax mediterranei/metabolismo , Haloferax volcanii/metabolismo , Ciclo do Nitrogênio/fisiologia , Biodegradação Ambiental , Mudança Climática , Ecossistema , Haloferax mediterranei/genética , Haloferax volcanii/genética , Oxirredução , Fenótipo
8.
Mar Drugs ; 16(6)2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29890662

RESUMO

Carotenoids are among the most abundant natural pigments available in nature. These pigments have received considerable attention because of their biotechnological applications and, more importantly, due to their potential beneficial uses in human healthcare, food processing, pharmaceuticals and cosmetics. These bioactive compounds are in high demand throughout the world; Europe and the USA are the markets where the demand for carotenoids is the highest. The in vitro synthesis of carotenoids has sustained their large-scale production so far. However, the emerging modern standards for a healthy lifestyle and environment-friendly practices have given rise to a search for natural biocompounds as alternatives to synthetic ones. Therefore, nowadays, biomass (vegetables, fruits, yeast and microorganisms) is being used to obtain naturally-available carotenoids with high antioxidant capacity and strong color, on a large scale. This is an alternative to the in vitro synthesis of carotenoids, which is expensive and generates a large number of residues, and the compounds synthesized are sometimes not active biologically. In this context, marine biomass has recently emerged as a natural source for both common and uncommon valuable carotenoids. Besides, the cultivation of marine microorganisms, as well as the downstream processes, which are used to isolate the carotenoids from these microorganisms, offer several advantages over the other approaches that have been explored previously. This review summarizes the general properties of the most-abundant carotenoids produced by marine microorganisms, focusing on the genuine/rare carotenoids that exhibit interesting features useful for potential applications in biotechnology, pharmaceuticals, cosmetics and medicine.


Assuntos
Organismos Aquáticos/metabolismo , Biotecnologia/métodos , Carotenoides/biossíntese , Microalgas/metabolismo , Biomassa , Carotenoides/isolamento & purificação , Carotenoides/uso terapêutico , Carotenoides/toxicidade , Suplementos Nutricionais , Humanos
9.
FEMS Microbiol Lett ; 365(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29237000

RESUMO

Haloarchaea thrive under saline and hypersaline conditions and often dominate microbial communities in saltmarshes, salted lakes/soils and some oceanic areas. Some of the predominant species show denitrifying capabilities, although it remains unclear whether they are complete or partial denitrifiers. As complete denitrifiers, they could play important roles buffering ecosystems in which nitrate and nitrite appear as contaminants. However, partial denitrifying haloarchaea could contribute to the emission of nitrogenous gasses, thus acting as drivers of climate change and ozone depletion. In this review, we summarise some recent results on denitrification in haloarchaea, discuss the environmental implications and outline possible applications in mitigation. Finally, we list questions to be addressed in the near future, facilitating increased understanding of the role of these organisms in N turnover in arid and hypersaline environments.


Assuntos
Archaea/metabolismo , Desnitrificação , Gases de Efeito Estufa/metabolismo , Óxido Nítrico/metabolismo , Óxido Nitroso/metabolismo , Archaea/enzimologia , Biodegradação Ambiental , Ecossistema , Nitritos/metabolismo , Ciclo do Nitrogênio , Tolerância ao Sal
10.
Environ Microbiol Rep ; 9(6): 788-796, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28925557

RESUMO

Microorganisms, including Bacteria and Archaea, play a key role in denitrification, which is the major mechanism by which fixed nitrogen returns to the atmosphere from soil and water. While the enzymology of denitrification is well understood in Bacteria, the details of the last two reactions in this pathway, which catalyse the reduction of nitric oxide (NO) via nitrous oxide (N2 O) to nitrogen (N2 ), are little studied in Archaea, and hardly at all in haloarchaea. This work describes an extensive interspecies analysis of both complete and draft haloarchaeal genomes aimed at identifying the genes that encode respiratory nitric oxide reductases (Nors). The study revealed that the only nor gene found in haloarchaea is one that encodes a single subunit quinone dependent Nor homologous to the qNor found in bacteria. This surprising discovery is considered in terms of our emerging understanding of haloarchaeal bioenergetics and NO management.


Assuntos
Proteínas Arqueais/metabolismo , Genoma Arqueal/genética , Halobacteriaceae/enzimologia , Halobacteriaceae/genética , Óxido Nitroso/metabolismo , Oxirredutases/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Benzoquinonas/química , Benzoquinonas/metabolismo , Sítios de Ligação , Meio Ambiente , Oxirredutases/química , Oxirredutases/genética , Conformação Proteica , Salinidade , Análise de Sequência de DNA , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...